03 December 2018

Google at NeurIPS 2018




This week, Montréal hosts the 32nd annual Conference on Neural Information Processing Systems (NeurIPS 2018), the biggest machine learning conference of the year. The conference includes invited talks, demonstrations and presentations of some of the latest in machine learning research. Google will have a strong presence at NeurIPS 2018, with more than 400 Googlers attending in order to contribute to, and learn from, the broader academic research community via talks, posters, workshops, competitions and tutorials. We will be presenting work that pushes the boundaries of what is possible in language understanding, translation, speech recognition and visual & audio perception, with Googlers co-authoring nearly 100 accepted papers (see below).

At the forefront of machine learning, Google is actively exploring virtually all aspects of the field spanning both theory and applications. This research is often inspired by real product needs but increasingly more often driven by scientific curiosity. Given the range of research projects that we pursue, we have found it useful to define a new framework which helps crystalize the goals of projects and allows us to measure progress and success in appropriate ways. Our contributions to NeurIPS and to the broader research community in general are integral to our research mission.

If you are attending NeurIPS 2018, we hope you’ll stop by our booth and chat with our researchers about the projects and opportunities at Google that go into solving the world's most challenging research problems, and to see demonstrations of some of the exciting research we pursue. You can also learn more about our work being presented in the list below (Googlers highlighted in blue).

Google is a Platinum Sponsor of NeurIPS 2018.

NeurIPS Foundation Board
Corinna Cortes, John C. Platt, Fernando Pereira

NeurIPS Organizing Committee
General Chair: Samy Bengio
Program Co-Chair: Hugo Larochelle
Party Chair: Douglas Eck
Diversity and Inclusion Co-Chair: Katherine A. Heller

NeurIPS Program Committee
Senior Area Chairs include:Angela Yu, Claudio Gentile, Cordelia Schmid, Corinna Cortes, Csaba Szepesvari, Dale Schuurmans, Elad Hazan, Mehryar Mohri, Raia Hadsell, Satyen Kale, Yishay Mansour, Afshin Rostamizadeh, Alex Kulesza

Area Chairs include: Amin Karbasi, Amir Globerson, Amit Daniely, Andras Gyorgy, Andriy Mnih, Been Kim, Branislav Kveton, Ce Liu, D Sculley, Danilo Rezende, Danny TarlowDavid Balduzzi, Denny Zhou, Dilan Gorur, Dumitru Erhan, George Dahl, Graham Taylor, Ian Goodfellow, Jasper Snoek, Jean-Philippe Vert, Jia Deng, Jon Shlens, Karen Simonyan, Kevin Swersky, Kun Zhang, Lihong Li, Marc G. Bellemare, Marco Cuturi, Maya Gupta, Michael BowlingMichalis Titsias, Mohammad Norouzi, Mouhamadou Moustapha Cisse, Nicolas Le Roux, Remi Munos, Sanjiv Kumar, Sanmi Koyejo, Sergey Levine, Silvia Chiappa, Slav PetrovSurya Ganguli, Timnit Gebru, Timothy Lillicrap, Viren Jain, Vitaly Feldman, Vitaly Kuznetsov

Workshops Program Committee includes: Mehryar Mohri, Sergey Levine

Accepted Papers
3D-Aware Scene Manipulation via Inverse Graphics
Shunyu Yao, Tzu Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, William T. Freeman, Joshua B. Tenenbaum

A Retrieve-and-Edit Framework for Predicting Structured Outputs
Tatsunori Hashimoto, Kelvin Guu, Yonatan Oren, Percy Liang

Adversarial Attacks on Stochastic Bandits
Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin Zhu

Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian Goodfellow, Jascha Sohl-Dickstein

Adversarially Robust Generalization Requires More Data
Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry

Are GANs Created Equal? A Large-Scale Study
Mario Lucic, Karol Kurach, Marcin Michalski, Olivier Bousquet, Sylvain Gelly

Collaborative Learning for Deep Neural Networks
Guocong Song, Wei Chai

Completing State Representations using Spectral Learning
Nan Jiang, Alex Kulesza, Santinder Singh

Content Preserving Text Generation with Attribute Controls
Lajanugen Logeswaran, Honglak Lee, Samy Bengio

Context-aware Synthesis and Placement of Object Instances
Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz

Co-regularized Alignment for Unsupervised Domain Adaptation
Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerlo Feris, William T. Freeman, Gregory Wornell

cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal, Ananda Theertha Suresh, Felix Yu, Sanjiv Kumar, H. Brendan Mcmahan

Data Center Cooling Using Model-Predictive Control
Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, Greg Imwalle

Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine

Deep Attentive Tracking via Reciprocative Learning
Shi Pu, Yibing Song, Chao Ma, Honggang Zhang, Ming-Hsuan Yang

Generalizing Point Embeddings Using the Wasserstein Space of Elliptical Distributions
Boris Muzellec, Marco Cuturi

GLoMo: Unsupervised Learning of Transferable Relational Graphs
Zhilin Yang, Jake (Junbo) Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun

GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking
Patrick Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh

Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang, Armando Solar-Lezama, Rishabh Singh

Learning Hierarchical Semantic Image Manipulation through Structured Representations
Seunghoon Hong, Xinchen Yan, Thomas Huang, Honglak Lee

Learning Temporal Point Processes via Reinforcement Learning
Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, Le Song

Learning Towards Minimum Hyperspherical Energy
Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song

Mesh-TensorFlow: Deep Learning for Supercomputers
Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, Blake Hechtman

MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare
Edward Choi, Cao Xiao, Walter F. Stewart, Jimeng Sun

Searching for Efficient Multi-Scale Architectures for Dense Image Prediction
Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam, Jonathon Shlens

SplineNets: Continuous Neural Decision Graphs
Cem Keskin, Shahram Izadi

Task-Driven Convolutional Recurrent Models of the Visual System
Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. K. Yamins

To Trust or Not to Trust a Classifier
Heinrich Jiang, Been Kim, Melody Guan, Maya Gupta

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
Ye Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu

Algorithms and Theory for Multiple-Source Adaptation
Judy Hoffman, Mehryar Mohri, Ningshan Zhang

A Lyapunov-based Approach to Safe Reinforcement Learning
Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, Mohammad Ghavamzadeh

Adaptive Methods for Nonconvex Optimization
Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, Sanjiv Kumar

Assessing Generative Models via Precision and Recall
Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly

A Loss Framework for Calibrated Anomaly Detection
Aditya Menon, Robert Williamson

Blockwise Parallel Decoding for Deep Autoregressive Models
Mitchell Stern, Noam Shazeer, Jakob Uszkoreit

Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Qiang Liu, Lihong Li, Ziyang Tang, Dengyong Zhou

Contextual Pricing for Lipschitz Buyers
Jieming Mao, Renato Leme, Jon Schneider

Coupled Variational Bayes via Optimization Embedding
Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song

Data Amplification: A Unified and Competitive Approach to Property Estimation
Yi HAO, Alon Orlitsky, Ananda Theertha Suresh, Yihong Wu

Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, Cristian Sminchisescu

Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation
Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wei Liu, Ming-Hsuan Yang

Diminishing Returns Shape Constraints for Interpretability and Regularization
Maya Gupta, Dara Bahri, Andrew Cotter, Kevin Canini

DropBlock: A Regularization Method for Convolutional Networks
Golnaz Ghiasi, Tsung-Yi Lin, Quoc V. Le

Generalization Bounds for Uniformly Stable Algorithms
Vitaly Feldman, Jan Vondrak

Geometrically Coupled Monte Carlo Sampling
Mark Rowland, Krzysztof Choromanski, Francois Chalus, Aldo Pacchiano, Tamas Sarlos, Richard E. Turner, Adrian Weller

GILBO: One Metric to Measure Them All
Alexander A. Alemi, Ian Fischer

Insights on Representational Similarity in Neural Networks with Canonical Correlation
Ari S. Morcos, Maithra Raghu, Samy Bengio

Improving Online Algorithms via ML Predictions
Manish Purohit, Zoya Svitkina, Ravi Kumar

Learning to Exploit Stability for 3D Scene Parsing
Yilun Du, Zhijan Liu, Hector Basevi, Ales Leonardis, William T. Freeman, Josh Tenembaum, Jiajun Wu

Maximizing Induced Cardinality Under a Determinantal Point Process
Jennifer Gillenwater, Alex Kulesza, Sergei Vassilvitskii, Zelda Mariet

Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing
Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, Ni Lao

PCA of High Dimensional Random Walks with Comparison to Neural Network Training
Joseph M. Antognini, Jascha Sohl-Dickstein

Predictive Approximate Bayesian Computation via Saddle Points
Yingxiang Yang, Bo Dai, Negar Kiyavash, Niao He

Recurrent World Models Facilitate Policy Evolution
David Ha, Jürgen Schmidhuber

Sanity Checks for Saliency Maps
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, Been Kim

Simple, Distributed, and Accelerated Probabilistic Programming
Dustin Tran, Matthew Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul, Matthew Johnson, Rif A. Saurous

Tangent: Automatic Differentiation Using Source-Code Transformation for Dynamically Typed Array Programming
Bart van Merriënboer, Dan Moldovan, Alex Wiltschko

The Emergence of Multiple Retinal Cell Types Through Efficient Coding of Natural Movies
Samuel A. Ocko, Jack Lindsey, Surya Ganguli, Stephane Deny

The Everlasting Database: Statistical Validity at a Fair Price
Blake Woodworth, Vitaly Feldman, Saharon Rosset, Nathan Srebro

The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural Network
Jeffrey Pennington, Pratik Worah

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin

Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language
Matthew D. Hoffman, Matthew Johnson, Dustin Tran

A Bayesian Nonparametric View on Count-Min Sketch
Diana Cai, Michael Mitzenmacher, Ryan Adams (no longer at Google)

Automatic Differentiation in ML: Where We are and Where We Should be Going
Bart van Merriënboer, Olivier Breuleux, Arnaud Bergeron, Pascal Lamblin

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov, Adam Santoro, Blake A. Richards, Geoffrey E. Hinton, Timothy P. Lillicrap

Deep Generative Models for Distribution-Preserving Lossy Compression
Michael Tschannen, Eirikur Agustsson, Mario Lucic

Deep Structured Prediction with Nonlinear Output Transformations
Colin Graber, Ofer Meshi, Alexander Schwing

Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning
Supasorn Suwajanakorn, Noah Snavely, Jonathan Tompson, Mohammad Norouzi

Transfer Learning with Neural AutoML
Catherine Wong, Neil Houlsby, Yifeng Lu, Andrea Gesmundo

Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses
Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Dmitry Storcheus, Scott Yang

Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification
Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru

Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization
Blake Woodworth, Jialei Wang, Brendan McMahan, Nathan Srebro

Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies
Sungryull Sohn, Junhyuk Oh, Honglak Lee

Human-in-the-Loop Interpretability Prior
Isaac Lage, Andrew Slavin Ross, Been Kim, Samuel J. Gershman, Finale Doshi-Velez

Joint Autoregressive and Hierarchical Priors for Learned Image Compression
David Minnen, Johannes Ballé, George D Toderici

Large-Scale Computation of Means and Clusters for Persistence Diagrams Using Optimal Transport
Théo Lacombe, Steve Oudot, Marco Cuturi

Learning to Reconstruct Shapes from Unseen Classes
Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu

Large Margin Deep Networks for Classification
Gamaleldin Fathy Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, Samy Bengio

Mallows Models for Top-k Lists
Flavio Chierichetti, Anirban Dasgupta, Shahrzad Haddadan, Ravi Kumar, Silvio Lattanzi

Meta-Learning MCMC Proposals
Tongzhou Wang, YI WU, Dave Moore, Stuart Russell

Non-delusional Q-Learning and Value-Iteration
Tyler Lu, Dale Schuurmans, Craig Boutilier

Online Learning of Quantum States
Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, Ashwin Nayak

Online Reciprocal Recommendation with Theoretical Performance Guarantees
Fabio Vitale, Nikos Parotsidis, Claudio Gentile

Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
Rad Niazadeh, Tim Roughgarden, Joshua R. Wang

Policy Regret in Repeated Games
Raman Arora, Michael Dinitz, Teodor Vanislavov Marinov, Mehryar Mohri

Provable Variational Inference for Constrained Log-Submodular Models
Josip Djolonga, Stefanie Jegelka, Andreas Krause

Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, Ian J. Goodfellow

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee

Visual Object Networks: Image Generation with Disentangled 3D Representations
JunYan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, William T. Freeman

Watch Your Step: Learning Node Embeddings via Graph Attention
Sami Abu-El-Haija, Bryan Perozzi, Rami AlRfou, Alexander Alemi

Workshops
2nd Workshop on Machine Learning on the Phone and Other Consumer Devices
Co-Chairs include: Sujith Ravi, Wei Chai, Hrishikesh Aradhye

Bayesian Deep Learning
Workshop Organizers include: Kevin Murphy

Continual Learning
Workshop Organizers include: Marc Pickett

The Second Conversational AI Workshop – Today's Practice and Tomorrow's Potential
Workshop Organizers include: Dilek Hakkani-Tur

Visually Grounded Interaction and Language
Workshop Organizers include: Olivier Pietquin

Workshop on Ethical, Social and Governance Issues in AI
Workshop Organizers include: D. Sculley

AI for Social Good
Workshop Program Committee includes: Samuel Greydanus

Black in AI
Workshop Organizers: Mouhamadou Moustapha Cisse, Timnit Gebru
Program Committee: Irwan Bello, Samy Bengio, Ian Goodfellow, Hugo Larochelle, Margaret Mitchell

Interpretability and Robustness in Audio, Speech, and Language
Workshop Organizers include: Ehsan Variani, Bhuvana Ramabhadran

LatinX in AI
Workshop Organizers includes: Pablo Samuel Castro
Program Committee includes: Sergio Guadarrama

Machine Learning for Systems
Workshop Organizers include: Anna Goldie, Azalia Mirhoseini, Kevin Swersky, Milad Hashemi
Program Committee includes: Simon Kornblith, Nicholas Frosst, Amir Yazdanbakhsh, Azade Nazi, James Bradbury, Sharan Narang, Martin Maas, Carlos Villavieja

Queer in AI
Workshop Organizers include: Raphael Gontijo Lopes

Second Workshop on Machine Learning for Creativity and Design
Workshop Organizers include: Jesse Engel, Adam Roberts

Workshop on Security in Machine Learning
Workshop Organizers include: Nicolas Papernot

Tutorial
Visualization for Machine Learning
Fernanda Viégas, Martin Wattenberg

Cohort and Age Effects


Cohort and Age Effects

Former eBay product chief RJ Pittman takes the reins at 3D capture company Matterport


Matterport, a provider of 3D image capture technology, has named former eBay chief product officer RJ Pittman as its new chief executive.

Pittman will take the reins from former chief executive Bill Brown, who will continue to advise Matterport as the company looks to capitalize on its library of three dimensional scans.

The company currently has a library of 1.4 million three dimensional models that have been viewed at least 600 million times since the company launched.

According to Silicon Valley Business Journal, the company had revenue in 2017 of $33 million from selling its camera equipment and software services to businesses.

The company was launched when founders Matt Bell and David Gausebeck realized the commercial potential of the motion capture and sensor technology that Microsoft had unveiled with their Kinect camera back in 2010.

At the time, the company’s several thousand dollar pieces of hardware were the cutting edge for capturing images — now it can be done with software and a cell phone camera. The march of technology has put Matterport in a somewhat precarious position, but the company continues to lock in deals with companies like Donan, an investigation service for insurers and others that looks at fire damage.

The company has inked deals with a number of different enterprise customers — and even brought on State Auto Labs as a strategic investor earlier this year.

“Matterport has the opportunity to revolutionize how property risks are underwritten and claims are handled in the insurance industry,” said Kim Garland, Senior Vice President, Commercial Lines & Managing Director of State Auto Labs said in a statement at the time.

In all, Matterport has raised around $77 million from investors including State Auto Labs, Lux Capital, DCM Ventures, Qualcomm Ventures, Ericsson Ventures, AMD Ventures, AME Cloud Ventures, CBRE, Felicis Ventures, GIC, Crate and Barrel founder Gordon Segal, iGlobe Partners, Navitas Ventures, News Corp, and Sound Ventures.

Matterport’s hardware can digtially capture, document, visualize and collaborate around properties in 3D on web, mobile and in VR. And its hosted Matterport Cloud service automates the creation of state-of-the-art 3D models, high-quality 4K 2D photography, floorplans and other assets and stores them in easily accessible formats.

There’s still a lot of contested space in the collection and capture of the real world for use in augmented and virtual reality and the addition of Pittman should help Matterport as it looks at a much more crowded competitive landscape.

“RJ’s operating experience at scale, paired with his entrepreneurial DNA and deep product vision will be instrumental to unlocking the full potential of our breakthrough technology and unparalleled 3D media and data,” said company co-founder and chief technology officer David Gausebeck, in a statement.

Indeed, Pittman discussed the importance of Matterport’s library when he spoke of the opportunity he saw for the company. “Matterport Cloud is an unrivaled dataset of precision 3D environments that represents an enormous opportunity to scale the company’s data services business exponentially. This will open up new strategic partnerships and investments as we realize the full value of this data,” Pittman said in a statement.

As an entrepreneur, product developer and real estate investor, Pittman is uniquely qualified to take charte at Matterport.

He previously worked on product, design, engineering and mobile payments at eBay and held roles at Apple and Google. In addition, he had also co-founded and served as the chief executive for the search engine that created the industry’s first graphical information interface, Groxis.

Finally, Pittman worked on a number of real estate projects in the U.S. and UK, giving him insight on the role that technology can play in the new architectural landscape.

 


Read Full Article

DeepMind claims early progress in AI-based predictive protein modelling


Google-owned AI specialist, DeepMind, has claimed a “significant milestone” in being able to demonstrate the usefulness of artificial intelligence to help with the complex task of predicting 3D structures of proteins based solely on their genetic sequence.

Understanding protein structures is important in disease diagnosis and treatment, and could improve scientists’ understanding of the human body — as well as potentially helping to support protein design and bioengineering.

Writing in a blog post about the project to use AI to predict how proteins fold — now two years in — it writes: “The 3D models of proteins that AlphaFold [DeepMind’s AI] generates are far more accurate than any that have come before — making significant progress on one of the core challenges in biology.”

There are various scientific methods for predicting the native 3D state of protein molecules (i.e. how the protein chain folds to arrive at the native state) from residual amino acids in DNA.

But modelling the 3D structure is a highly complex task, given how many permutations there can be on account of protein folding being dependent on factors such as interactions between amino acids.

There’s even a crowdsourced game (FoldIt) that tries to leverage human intuition to predict workable protein forms.

DeepMind says its approach rests upon years of prior research in using big data to try to predict protein structures.

Specifically it’s applying deep learning approaches to genomic data.

“Fortunately, the field of genomics is quite rich in data thanks to the rapid reduction in the cost of genetic sequencing. As a result, deep learning approaches to the prediction problem that rely on genomic data have become increasingly popular in the last few years. DeepMind’s work on this problem resulted in AlphaFold, which we submitted to CASP [Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction] this year,” it writes in the blog post.

“We’re proud to be part of what the CASP organisers have called “unprecedented progress in the ability of computational methods to predict protein structure,” placing first in rankings among the teams that entered (our entry is A7D).”

“Our team focused specifically on the hard problem of modelling target shapes from scratch, without using previously solved proteins as templates. We achieved a high degree of accuracy when predicting the physical properties of a protein structure, and then used two distinct methods to construct predictions of full protein structures,” it adds.

DeepMind says the two methods it used relied on using deep neural networks trained to predict protein properties from its genetic sequence.

“The properties our networks predict are: (a) the distances between pairs of amino acids and (b) the angles between chemical bonds that connect those amino acids. The first development is an advance on commonly used techniques that estimate whether pairs of amino acids are near each other,” it explains.

“We trained a neural network to predict a separate distribution of distances between every pair of residues in a protein. These probabilities were then combined into a score that estimates how accurate a proposed protein structure is. We also trained a separate neural network that uses all distances in aggregate to estimate how close the proposed structure is to the right answer.”

It then used new methods to try to construct predictions of protein structures, searching known structures that matched its predictions.

“Our first method built on techniques commonly used in structural biology, and repeatedly replaced pieces of a protein structure with new protein fragments. We trained a generative neural network to invent new fragments, which were used to continually improve the score of the proposed protein structure,” it writes.

“The second method optimised scores through gradient descent — a mathematical technique commonly used in machine learning for making small, incremental improvements — which resulted in highly accurate structures. This technique was applied to entire protein chains rather than to pieces that must be folded separately before being assembled, reducing the complexity of the prediction process.”

DeepMind describes the results achieved thus far as “early signs of progress in protein folding” using computational methods — claiming they demonstrate “the utility of AI for scientific discovery”.

Though it also emphasizes it’s still early days for the deep learning approach having any kind of “quantifiable impact”.

“Even though there’s a lot more work to do before we’re able to have a quantifiable impact on treating diseases, managing the environment, and more, we know the potential is enormous,” it writes. “With a dedicated team focused on delving into how machine learning can advance the world of science, we’re looking forward to seeing the many ways our technology can make a difference.”


Read Full Article